
An Introduction to

Numerical Analysis
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1

Solution of equations by iteration

1.1 Introduction

Equations of various kinds arise in a range of physical applications and
a substantial body of mathematical research is devoted to their study.
Some equations are rather simple: in the early days of our mathematical
education we all encountered the single linear equation ax+b = 0, where
a and b are real numbers and a �= 0, whose solution is given by the
formula x = −b/a. Many equations, however, are nonlinear: a simple
example is ax2 + bx+ c = 0, involving a quadratic polynomial with real
coefficients a, b, c, and a �= 0. The two solutions to this equation, labelled
x1 and x2, are found in terms of the coefficients of the polynomial from
the familiar formulae

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

−b−√
b2 − 4ac

2a
. (1.1)

It is less likely that you have seen the more intricate formulae for the
solution of cubic and quartic polynomial equations due to the sixteenth
century Italian mathematicians Niccolo Fontana Tartaglia (1499–1557)
and Lodovico Ferrari (1522–1565), respectively, which were published
by Girolamo Cardano (1501–1576) in 1545 in his Artis magnae sive de
regulis algebraicis liber unus. In any case, if you have been led to believe
that similar expressions involving radicals (roots of sums of products of
coefficients) will supply the solution to any polynomial equation, then
you should brace yourself for a surprise: no such closed formula exists
for a general polynomial equation of degree n when n ≥ 5. It transpires
that for each n ≥ 5 there exists a polynomial equation of degree n with

1



2 1 Solution of equations by iteration

integer coefficients which cannot be solved in terms of radicals;1 such is,
for example, x5 − 4x− 2 = 0.

Since there is no general formula for the solution of polynomial equa-
tions, no general formula will exist for the solution of an arbitrary non-
linear equation of the form f(x) = 0 where f is a continuous real-valued
function. How can we then decide whether or not such an equation
possesses a solution in the set of real numbers, and how can we find a
solution?

The present chapter is devoted to the study of these questions. Our
goal is to develop simple numerical methods for the approximate solution
of the equation f(x) = 0 where f is a real-valued function, defined and
continuous on a bounded and closed interval of the real line. Methods
of the kind discussed here are iterative in nature and produce sequences
of real numbers which, in favourable circumstances, converge to the
required solution.

1.2 Simple iteration

Suppose that f is a real-valued function, defined and continuous on a
bounded closed interval [a, b] of the real line. It will be tacitly assumed
throughout the chapter that a < b, so that the interval is nonempty. We
wish to find a real number ξ ∈ [a, b] such that f(ξ) = 0. If such ξ exists,
it is called a solution to the equation f(x) = 0.

Even some relatively simple equations may fail to have a solution in
the set of real numbers. Consider, for example,

f: x �→ x2 + 1 .

Clearly f(x) = 0 has no solution in any interval [a, b] of the real line.
Indeed, according to (1.1), the quadratic polynomial x2+1 has two roots:
x1 =

√−1 = ı and x2 = −√−1 = −ı. However, these belong to the set
of imaginary numbers and are therefore excluded by our definition of
solution which only admits real numbers. In order to avoid difficulties
of this kind, we begin by exploring the existence of solutions to the
equation f(x) = 0 in the set of real numbers. Our first result in this
direction is rather simple.
1 This result was proved in 1824 by the Norwegian mathematician Niels Henrik Abel
(1802–1829), and was further refined in the work of Evariste Galois (1811–1832)
who clarified the circumstances in which a closed formula may exist for the solution
of a polynomial equation of degree n in terms of radicals.
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Theorem 1.1 Let f be a real-valued function, defined and continuous
on a bounded closed interval [a, b] of the real line. Assume, further, that
f(a)f(b) ≤ 0; then, there exists ξ in [a, b] such that f(ξ) = 0.

Proof If f(a) = 0 or f(b) = 0, then ξ = a or ξ = b, respectively, and the
proof is complete. Now, suppose that f(a)f(b) �= 0. Then, f(a)f(b) < 0;
in other words, 0 belongs to the open interval whose endpoints are f(a)
and f(b). By the Intermediate Value Theorem (Theorem A.1), there
exists ξ in the open interval (a, b) such that f(ξ) = 0.

To paraphrase Theorem 1.1, if a continuous function f has opposite
signs at the endpoints of the interval [a, b], then the equation f(x) = 0
has a solution in (a, b). The converse statement is, of course, false.
Consider, for example, a continuous function defined on [a, b] which
changes sign in the open interval (a, b) an even number of times, with
f(a)f(b) �= 0; then, f(a)f(b) > 0 even though f(x) = 0 has solutions
inside [a, b]. Of course, in the latter case, there exist an even number
of subintervals of (a, b) at the endpoints of each of which f does have
opposite signs. However, finding such subintervals may not always be
easy.

To illustrate this last point, consider the rather pathological function

f: x �→ 1
2
− 1

1 +M |x− 1.05| , (1.2)

depicted in Figure 1.1 for x in the closed interval [0.8, 1.8] and M = 200.
The solutions x1 = 1.05− (1/M) and x2 = 1.05+(1/M) to the equation
f(x) = 0 are only a distance 2/M apart and, for large and positive M ,
locating them computationally will be a challenging task.

Remark 1.1 If you have access to the mathematical software package
Maple, plot the function f by typing

plot(1/2-1/(1+200*abs(x-1.05)), x=0.8..1.8, y=-0.5..0.6);

at the Maple command line, and then repeat this experiment by choosing
M = 2000, 20000, 200000, 2000000, and 20000000 in place of the num-
ber 200. What do you observe? For the last two values of M , replot the
function f for x in the subinterval [1.04999, 1.05001]. 


An alternative sufficient condition for the existence of a solution to
the equation f(x) = 0 is arrived at by rewriting it in the equivalent
form x − g(x) = 0 where g is a certain real-valued function, defined
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Fig. 1.1. Graph of the function f : x �→ 1
2
− 1

1+200|x−1.05| for x ∈ [0.8, 1.8].

and continuous on [a, b]; the choice of g and its relationship with f will
be clarified below through examples. Upon such a transformation the
problem of solving the equation f(x) = 0 is converted into one of finding
ξ such that ξ − g(ξ) = 0.

Theorem 1.2 (Brouwer’s Fixed Point Theorem) Suppose that g
is a real-valued function, defined and continuous on a bounded closed
interval [a, b] of the real line, and let g(x) ∈ [a, b] for all x ∈ [a, b].
Then, there exists ξ in [a, b] such that ξ = g(ξ); the real number ξ is
called a fixed point of the function g.

Proof Let f(x) = x−g(x). Then, f(a) = a−g(a) ≤ 0 since g(a) ∈ [a, b]
and f(b) = b− g(b) ≥ 0 since g(b) ∈ [a, b]. Consequently, f(a)f(b) ≤ 0,
with f defined and continuous on the closed interval [a, b]. By Theorem
1.1 there exists ξ ∈ [a, b] such that 0 = f(ξ) = ξ − g(ξ).

Figure 1.2 depicts the graph of a function x �→ g(x), defined and
continuous on a closed interval [a, b] of the real line, such that g(x)
belongs to [a, b] for all x in [a, b]. The function g has three fixed points
in the interval [a, b]: the x-coordinates of the three points of intersection
of the graph of g with the straight line y = x.

Of course, any equation of the form f(x) = 0 can be rewritten in the
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y

Fig. 1.2. Graph of a function g, defined and continuous on the interval [a, b],
which maps [a, b] into itself; g has three fixed points in [a, b]: the x-coordinates
of the three points of intersection of the graph of g with y = x.

equivalent form of x = g(x) by letting g(x) = x+f(x). While there is no
guarantee that the function g, so defined, will satisfy the conditions of
Theorem 1.2, there are many alternative ways of transforming f(x) = 0
into x = g(x), and we only have to find one such rearrangement with g
continuous on [a, b] and such that g(x) ∈ [a, b] for all x ∈ [a, b]. Sounds
simple? Fine. Take a look at the following example.

Example 1.1 Consider the function f defined by f(x) = ex − 2x − 1
for x ∈ [1, 2]. Clearly, f(1) < 0 and f(2) > 0. Thus we deduce from
Theorem 1.1 the existence of ξ in [1, 2] such that f(ξ) = 0.

In order to relate this example to Theorem 1.2, let us rewrite the equa-
tion f(x) = 0 in the equivalent form x−g(x) = 0, where the function g is
defined on the interval [1, 2] by g(x) = ln(2x+ 1); here (and throughout
the book) ln means loge. As g(1) ∈ [1, 2], g(2) ∈ [1, 2] and g is monotonic
increasing, it follows that g(x) ∈ [1, 2] for all x ∈ [1, 2], showing that g
satisfies the conditions of Theorem 1.2. Thus, again, we deduce the
existence of ξ ∈ [1, 2] such that ξ − g(ξ) = 0 or, equivalently, f(ξ) = 0.

We could have also rewritten our equation as x = (ex−1)/2. However,
the associated function g: x �→ (ex−1)/2 does not map the interval [1, 2]
into itself, so Theorem 1.2 cannot then be applied. 
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Although the ability to verify the existence of a solution to the equa-
tion f(x) = 0 is important, none of what has been said so far provides
a method for solving this equation. The following definition is a first
step in this direction: it will lead to the construction of an algorithm for
computing an approximation to the fixed point ξ of the function g, and
will thereby supply an approximate solution to the equivalent equation
f(x) = 0.

Definition 1.1 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a, b] of the real line, and assume
that g(x) ∈ [a, b] for all x ∈ [a, b]. Given that x0 ∈ [a, b], the recursion
defined by

xk+1 = g(xk) , k = 0, 1, 2, . . . , (1.3)

is called a simple iteration; the numbers xk, k ≥ 0, are referred to as
iterates.

If the sequence (xk) defined by (1.3) converges, the limit must be a
fixed point of the function g, since g is continuous on a closed interval.
Indeed, writing ξ = limk→∞ xk, we have that

ξ = lim
k→∞

xk+1 = lim
k→∞

g(xk) = g

(
lim
k→∞

xk

)
= g(ξ) , (1.4)

where the second equality follows from (1.3) and the third equality is a
consequence of the continuity of g.

A sufficient condition for the convergence of the sequence (xk) is pro-
vided by our next result which represents a refinement of Brouwer’s
Fixed Point Theorem, under the additional assumption that the map-
ping g is a contraction.

Definition 1.2 (Contraction) Suppose that g is a real-valued func-
tion, defined and continuous on a bounded closed interval [a, b] of the
real line. Then, g is said to be a contraction on [a, b] if there exists a
constant L such that 0 < L < 1 and

|g(x) − g(y)| ≤ L|x− y| ∀x, y ∈ [a, b] . (1.5)

Remark 1.2 The terminology ‘contraction’ stems from the fact that
when (1.5) holds with 0 < L < 1, the distance | g(x)− g(y) | between the
images of the points x, y is (at least 1/L times) smaller than the distance
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|x − y | between x and y. More generally, when L is any positive real
number, (1.5) is referred to as a Lipschitz condition.1

Armed with Definition 1.2, we are now ready to state the main result
of this section.

Theorem 1.3 (Contraction Mapping Theorem) Let g be a real-
valued function, defined and continuous on a bounded closed interval
[a, b] of the real line, and assume that g(x) ∈ [a, b] for all x ∈ [a, b].
Suppose, further, that g is a contraction on [a, b]. Then, g has a unique
fixed point ξ in the interval [a, b]. Moreover, the sequence (xk) defined
by (1.3) converges to ξ as k → ∞ for any starting value x0 in [a, b].

Proof The existence of a fixed point ξ for g is a consequence of Theorem
1.2. The uniqueness of this fixed point follows from (1.5) by contradic-
tion: for suppose that g has a second fixed point, η, in [a, b]. Then,

| ξ − η | = | g(ξ) − g(η) | ≤ L| ξ − η | ,
i.e., (1 − L)| ξ − η | ≤ 0. As 1 − L > 0, we deduce that η = ξ.

Let x0 be any element of [a, b] and consider the sequence (xk) de-
fined by (1.3). We shall prove that (xk) converges to the fixed point ξ.
According to (1.5) we have that

|xk − ξ | = | g(xk−1) − g(ξ) | ≤ L|xk−1 − ξ | , k ≥ 1 ,

from which we then deduce by induction that

|xk − ξ | ≤ Lk|x0 − ξ | , k ≥ 1 . (1.6)

As L ∈ (0, 1), it follows that limk→∞ Lk = 0, and hence we conclude
that limk→∞ |xk − ξ | = 0.

Let us illustrate the Contraction Mapping Theorem by an example.

Example 1.2 Consider the equation f(x) = 0 on the interval [1, 2] with
f(x) = ex−2x−1, as in Example 1.1. Recall from Example 1.1 that this
equation has a solution, ξ, in the interval [1, 2], and ξ is a fixed point of
the function g defined on [1, 2] by g(x) = ln(2x+ 1).

1 Rudolf Otto Sigismund Lipschitz (14 May 1832, Königsberg, Prussia (now Kalin-
ingrad, Russia) – 7 October 1903, Bonn, Germany) made important contributions
to number theory, the theory of Bessel functions and Fourier series, the theory
of ordinary and partial differential equations, and to analytical mechanics and
potential theory.
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Table 1.1. The sequence (xk) defined by (1.8).

k xk

0 1.000000
1 1.098612
2 1.162283
3 1.201339
4 1.224563
5 1.238121
6 1.245952
7 1.250447
8 1.253018
9 1.254486

10 1.255323
11 1.255800

Now, the function g is defined and continuous on the interval [1, 2], and g
is differentiable on (1, 2). Thus, by the Mean Value Theorem (Theorem
A.3), for any x, y in [1, 2] we have that

| g(x) − g(y) | = | g′(η)(x− y) | = |g′(η)| |x− y | (1.7)

for some η that lies between x and y and is therefore in the interval
[1, 2]. Further, g′(x) = 2/(2x + 1) and g′′(x) = −4/(2x + 1)2. As
g′′(x) < 0 for all x in [1, 2], g′ is monotonic decreasing on [1, 2]. Hence
g′(1) ≥ g′(η) ≥ g′(2), i.e., g′(η) ∈ [2/5, 2/3]. Thus we deduce from (1.7)
that

| g(x) − g(y) | ≤ L|x− y | ∀x, y ∈ [1, 2] ,

with L = 2/3. According to the Contraction Mapping Theorem, the
sequence (xk) defined by the simple iteration

xk+1 = ln(2xk + 1) , k = 0, 1, 2, . . . , (1.8)

converges to ξ for any starting value x0 in [1, 2]. Let us choose x0 = 1, for
example, and compute the next 11 iterates, say. The results are shown
in Table 1.1. Even though we have carried six decimal digits, after 11
iterations only the first two decimal digits of the iterates xk appear to
have settled; thus it seems likely that ξ = 1.26 to two decimal digits. 


You may now wonder how many iterations we should perform in (1.8)
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to ensure that all six decimals have converged to their correct values. In
order to answer this question, we need to carry out some analysis.

Theorem 1.4 Consider the simple iteration (1.3) where the function
g satisfies the hypotheses of the Contraction Mapping Theorem on the
bounded closed interval [a, b]. Given x0 ∈ [a, b] and a certain tolerance
ε > 0, let k0(ε) denote the smallest positive integer such that xk is no
more than ε away from the (unknown) fixed point ξ, i.e., |xk − ξ| ≤ ε,
for all k ≥ k0(ε). Then,

k0(ε) ≤
[
ln |x1 − x0 | − ln (ε(1 − L))

ln(1/L)

]
+ 1 , (1.9)

where, for a real number x, [x] signifies the largest integer less than or
equal to x.

Proof From (1.6) in the proof of Theorem 1.3 we know that

|xk − ξ| ≤ Lk |x0 − ξ| , k ≥ 1 .

Using this result with k = 1, we obtain

|x0 − ξ| = |x0 − x1 + x1 − ξ|
≤ |x0 − x1| + |x1 − ξ|
≤ |x0 − x1| + L|x0 − ξ| .

Hence

|x0 − ξ| ≤ 1
1 − L |x0 − x1| .

By substituting this into (1.6) we get

|xk − ξ| ≤ Lk

1 − L |x1 − x0| . (1.10)

Thus, in particular, |xk − ξ| ≤ ε provided that

Lk 1
1 − L |x1 − x0| ≤ ε .

On taking the (natural) logarithm of each side in the last inequality, we
find that |xk − ξ| ≤ ε for all k such that

k ≥ ln |x1 − x0| − ln (ε(1 − L))
ln(1/L)

.

Therefore, the smallest integer k0(ε) such that |xk − ξ| ≤ ε for all
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k ≥ k0(ε) cannot exceed the expression on the right-hand side of the
inequality (1.9).

This result provides an upper bound on the maximum number of
iterations required to ensure that the error between the kth iterate xk
and the (unknown) fixed point ξ is below the prescribed tolerance ε.
Note, in particular, from (1.9), that if L is close to 1, then k0(ε) may
be quite large for any fixed ε. We shall revisit this point later on in the
chapter.

Example 1.3 Now we can return to Example 1.2 to answer the ques-
tion posed there about the maximum number of iterations required, with
starting value x0 = 1, to ensure that the last iterate computed is correct
to six decimal digits.

Letting ε = 0.5×10−6 and recalling from Example 1.2 that L = 2/3, the
formula (1.9) yields k0(ε) ≤ [32.778918]+1, so we have that k0(ε) ≤ 33.
In fact, 33 is a somewhat pessimistic overestimate of the number of
iterations required: computing the iterates xk successively shows that
already x25 is correct to six decimal digits, giving ξ = 1.256431. 


Condition (1.5) can be rewritten in the following equivalent form:∣∣∣∣g(x) − g(y)x− y
∣∣∣∣ ≤ L ∀x, y ∈ [a, b] , x �= y ,

with L ∈ (0, 1), which can, in turn, be rephrased by saying that the
absolute value of the slope of the function g does not exceed L ∈ (0, 1).
Assuming that g is a differentiable function on the open interval (a, b),
the Mean Value Theorem (Theorem A.3) tells us that

g(x) − g(y)
x− y = g′(η)

for some η that lies between x and y and is therefore contained in the
interval (a, b).

We shall therefore adopt the following assumption that is somewhat
stronger than (1.5) but is easier to verify in practice:

g is differentiable on (a, b) and
(1.11)

∃L ∈ (0, 1) such that |g′(x)| ≤ L for all x ∈ (a, b) .

Consequently, Theorem 1.3 still holds when (1.5) is replaced by (1.11).
We note that the requirement in (1.11) that g be differentiable is
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indeed more demanding than the Lipschitz condition (1.5): for example,
g(x) = |x| satisfies the Lipschitz condition on any closed interval of the
real line, with L = 1, yet g is not differentiable at x = 0.1

Next we discuss a local version of the Contraction Mapping Theorem,
where (1.11) is only assumed in a neighbourhood of the fixed point ξ
rather than over the entire interval [a, b].

Theorem 1.5 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a, b] of the real line, and assume
that g(x) ∈ [a, b] for all x ∈ [a, b]. Let ξ = g(ξ) ∈ [a, b] be a fixed point
of g (whose existence is ensured by Theorem 1.2), and assume that g
has a continuous derivative in some neighbourhood of ξ with |g′(ξ)| < 1.
Then, the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, converges to ξ
as k → ∞, provided that x0 is sufficiently close to ξ.

Proof By hypothesis, there exists h > 0 such that g′ is continuous in
the interval [ξ−h, ξ+h]. Since |g′(ξ)| < 1 we can find a smaller interval
Iδ = [ξ−δ, ξ+δ], where 0 < δ ≤ h, such that |g′(x)| ≤ L in this interval,
with L < 1. To do so, take L = 1

2 (1 + |g′(ξ)|) and then choose δ ≤ h

such that

|g′(x) − g′(ξ)| ≤ 1
2 (1 − |g′(ξ)|)

for all x in Iδ; this is possible since g′ is continuous at ξ. Hence,

|g′(x)| ≤ |g′(x) − g′(ξ)| + |g′(ξ)| ≤ 1
2 (1 − |g′(ξ)|) + |g′(ξ)| = L

for all x ∈ Iδ. Now, suppose that xk lies in the interval Iδ. Then,

xk+1 − ξ = g(xk) − ξ = g(xk) − g(ξ) = (xk − ξ)g′(ηk)
by the Mean Value Theorem (Theorem A.3), where ηk lies between xk
and ξ, and therefore also belongs to Iδ. Hence |g′(ηk)| ≤ L, and

|xk+1 − ξ| ≤ L|xk − ξ| . (1.12)

This shows that xk+1 also lies in Iδ, and a simple argument by induction
shows that if x0 belongs to Iδ, then all xk, k ≥ 0, are in Iδ, and also

|xk − ξ| ≤ Lk|x0 − ξ| , k ≥ 0 . (1.13)

Since 0 < L < 1 this implies that the sequence (xk) converges to ξ.
1 If you are familiar with the concept of Lebesgue measure, you will find the following
result, known as Rademacher’s Theorem, revealing. A function f satisfying
the Lipschitz condition (1.5) on an interval [a, b] is differentiable on [a, b], except,
perhaps, at the points of a subset of zero Lebesgue measure.
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If the conditions of Theorem 1.5 are satisfied in the vicinity of a fixed
point ξ, then the sequence (xk) defined by the iteration xk+1 = g(xk),
k ≥ 0, will converge to ξ for any starting value x0 that is sufficiently
close to ξ. If, on the other hand, the conditions of Theorem 1.5 are
violated, there is no guarantee that any sequence (xk) defined by the
iteration xk+1 = g(xk), k ≥ 0, will converge to the fixed point ξ for
any starting value x0 near ξ. In order to distinguish between these two
cases, we introduce the following definition.

Definition 1.3 Suppose that g is a real-valued function, defined and
continuous on the bounded closed interval [a, b], such that g(x) ∈ [a, b]
for all x ∈ [a, b], and let ξ denote a fixed point of g. We say that ξ is
a stable fixed point of g, if the sequence (xk) defined by the iteration
xk+1 = g(xk), k ≥ 0, converges to ξ whenever the starting value x0 is
sufficiently close to ξ. Conversely, if no sequence (xk) defined by this
iteration converges to ξ for any starting value x0 close to ξ, except for
x0 = ξ, then we say that ξ is an unstable fixed point of g.

We note that, with this definition, a fixed point may be neither stable
nor unstable (see Exercise 2).

As will be demonstrated below in Example 1.5, even some very simple
functions may possess both stable and unstable fixed points. Theorem
1.5 shows that if g′ is continuous in a neighbourhood of ξ, then the
condition |g′(ξ)| < 1 is sufficient to ensure that ξ is a stable fixed point.
The case of an unstable fixed point will be considered later, in Theorem
1.6.

Now, assuming that ξ is a stable fixed point of g, we may also be in-
terested in the speed at which the sequence (xk) defined by the iteration
xk+1 = g(xk), k ≥ 0, converges to ξ. Under the hypotheses of Theorem
1.5, it follows from the proof of that theorem that

lim
k→∞

|xk+1 − ξ|
|xk − ξ| = lim

k→∞

∣∣∣∣g(xk) − g(ξ)xk − ξ
∣∣∣∣ = |g′(ξ)| . (1.14)

Consequently, we can regard |g′(ξ)| ∈ (0, 1) as a measure of the speed of
convergence of the sequence (xk) to the fixed point ξ.

Definition 1.4 Suppose that ξ = limk→∞ xk. We say that the sequence
(xk) converges to ξ at least linearly if there exist a sequence (εk) of
positive real numbers converging to 0, and µ ∈ (0, 1), such that

|xk − ξ| ≤ εk , k = 0, 1, 2, . . . , and lim
k→∞

εk+1

εk
= µ . (1.15)
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If (1.15) holds with µ = 0, then the sequence (xk) is said to converge to
ξ superlinearly.

If (1.15) holds with µ ∈ (0, 1) and εk = |xk − ξ|, k = 0, 1, 2, . . ., then
(xk) is said to converge to ξ linearly, and the number ρ = − log10 µ is
then called the asymptotic rate of convergence of the sequence. If
(1.15) holds with µ = 1 and εk = |xk − ξ|, k = 0, 1, 2, . . ., the rate of
convergence is slower than linear and we say that the sequence converges
to ξ sublinearly.

The words ‘at least’ in this definition refer to the fact that we only
have inequality in |xk−ξ| ≤ εk, which may be all that can be ascertained
in practice. Thus, it is really the sequence of bounds εk that converges
linearly.

For a linearly convergent sequence the asymptotic rate of convergence
ρ measures the number of correct decimal digits gained in one iteration;
in particular, the number of iterations required in order to gain one more
correct decimal digit is at most [1/ρ] + 1. Here [1/ρ] denotes the largest
integer that is less than or equal to 1/ρ.

Under the hypotheses of Theorem 1.5, the equalities (1.14) will hold
with µ = |g′(ξ)| ∈ [0, 1), and therefore the sequence (xk) generated
by the simple iteration will converge to the fixed point ξ linearly or
superlinearly.

Example 1.4 Given that α is a fixed positive real number, consider the
function g defined on the interval [0, 1] by

g(x) =

{
2−{1+(log2(1/x))1/α}α

for 0 < x ≤ 1 ,
0 for x = 0 .

As limx→0+ g(x) = 0, the function g is continuous on [0, 1]. Moreover, g
is strictly monotonic increasing on [0, 1] and g(x) ∈ [0, 1/2] ⊂ [0, 1] for
all x in [0, 1]. We note that ξ = 0 is a fixed point of g (cf. Figure 1.3).

Consider the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, with
x0 = 1. It is a simple matter to show by induction that xk = 2−kα

,
k ≥ 0. Thus we deduce that (xk) converges to ξ = 0 as k → ∞. Since

lim
k→∞

∣∣∣∣xk+1

xk

∣∣∣∣ = µ =




1 for 0 < α < 1 ,
1
2 for α = 1 ,
0 for α > 1 ,

we conclude that for α ∈ (0, 1) the sequence (xk) converges to ξ = 0 sub-
linearly. For α = 1 it converges to ξ = 0 linearly with asymptotic rate
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Fig. 1.3. Graph of the function g from Example 1.4 on the interval x ∈ [0, 1]
for (a) α = 1/2, (b) α = 1, (c) α = 2.

ρ = − log10 µ = log10 2. When α > 1, the sequence converges to the fixed
point ξ = 0 superlinearly. The same conclusions could have been reached
by showing (through tedious differentiation) that limx→0+ g

′(x) = µ,
with µ as defined above for the various values of the parameter α. 


For a linearly convergent simple iteration xk+1 = g(xk), where g′ is
continuous in a neighbourhood of the fixed point ξ and 0 < |g′(ξ)| < 1,
Definition 1.4 and (1.14) imply that the asymptotic rate of convergence
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of the sequence (xk) is ρ = − log10 |g′(ξ)|. Evidently, a small value of
|g′(ξ)| corresponds to a large positive value of ρ and will result in more
rapid convergence, while if |g′(ξ)| < 1 but |g′(ξ)| is very close to 1, ρ will
be a small positive number and the sequence will converge very slowly.1

Next, we discuss the behaviour of the iteration (1.3) in the vicinity of
an unstable fixed point ξ. If |g′(ξ)| > 1, then the sequence (xk) defined
by (1.3) does not converge to ξ from any starting value x0; the next
theorem gives a rigorous proof of this fact.

Theorem 1.6 Suppose that ξ = g(ξ), where the function g has a con-
tinuous derivative in some neighbourhood of ξ, and let |g′(ξ)| > 1. Then,
the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, does not converge to
ξ from any starting value x0, x0 �= ξ.

Proof Suppose that x0 �= ξ. As in the proof of Theorem 1.5, we can see
that there is an interval Iδ = [ξ−δ, ξ+δ], δ > 0, in which |g′(x)| ≥ L > 1
for some constant L. If xk lies in this interval, then

|xk+1 − ξ| = |g(xk) − g(ξ)| = |(xk − ξ) g′(ηk)| ≥ L|xk − ξ| ,
for some ηk between xk and ξ. If xk+1 lies in Iδ the same argument
shows that

|xk+2 − ξ| ≥ L|xk+1 − ξ| ≥ L2|xk − ξ| ,
and so on. Evidently, after a finite number of steps some member of
the sequence xk+1, xk+2, xk+3, . . . must be outside the interval Iδ, since
L > 1. Hence there can be no value of k0 = k0(δ) such that |xk − ξ| ≤ δ
for all k ≥ k0, and the sequence therefore does not converge to ξ.

Example 1.5 In this example we explore the simple iteration (1.3) for
g defined by

g(x) = 1
2 (x2 + c)

where c ∈ R is a fixed constant.

The fixed points of the function g are the solutions of the quadratic
equation x2 − 2x+ c = 0, which are 1 ±√

(1 − c). If c > 1 there are no
solutions (in the set R of real numbers, that is!), if c = 1 there is one
solution in R, and if c < 1 there are two.
1 Thus 0 < ρ � 1 corresponds to slow linear convergence and ρ � 1 to fast linear
convergence. It is for this reason that we defined the asymptotic rate of conver-
gence ρ, for a linearly convergent sequence, as − log10 µ (or − log10 |g′(ξ)|) rather
than µ (or |g′(ξ)| ) .
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Suppose now that c < 1; we denote the solutions by ξ1 = 1−√
(1− c)

and ξ2 = 1+
√

(1−c), so that ξ1 < 1 < ξ2. We see at once that g′(x) = x,
so the fixed point ξ2 is unstable, but that the fixed point ξ1 is stable
provided that −3 < c < 1. In fact, it is easy to see that the sequence
(xk) defined by the iteration xk+1 = g(xk), k ≥ 0, will converge to ξ1
if the starting value x0 satisfies −ξ2 < x0 < ξ2. (See Exercise 1.) If
c is close to 1, g′(ξ1) will also be close to 1 and convergence will be
slow. When c = 0, ξ1 = 0 so that convergence is superlinear. This is an
example of quadratic convergence which we shall meet later. 


The purpose of our next example is to illustrate the concept of asymp-
totic rate of convergence. According to Definition 1.4, the asymptotic
rate of convergence of a sequence describes the relative closeness of suc-
cessive terms in the sequence to the limit ξ as k → ∞. Of course, for
small values of k the sequence may behave in quite a different way, and
since in practical computation we are interested in approximating the
limit of the sequence by using just a small number of terms, the asymp-
totic rate of convergence may sometimes give a misleading impression.

Example 1.6 In this example we study the convergence of the sequences
(uk) and (vk) defined by

uk+1 = g1(uk), k = 0, 1, 2, . . . , u0 = 1 ,

vk+1 = g2(vk), k = 0, 1, 2, . . . , v0 = 1 ,

where

g1(x) = 0.99x and g2(x) =
x

(1 + x1/10)10
.

Each of the two functions has a fixed point at ξ = 0, and we easily find
that g′1(0) = 0.99, g′2(0) = 1. Hence the sequence (uk) is linearly con-
vergent to zero with asymptotic rate of convergence ρ = − log10 0.99 ≈
0.004, while Theorem 1.5 does not apply to the sequence (vk). It is quite
easy to show by induction that vk = (k + 1)−10, so the sequence (vk)
also converges to zero, but since limk→∞(vk+1/vk) = 1 the convergence
is sublinear. This means that, in the limit, (uk) will converge faster than
(vk). However, this is not what happens for small k, as Table 1.2 shows
very clearly.

The sequence (vk) has converged to zero correct to 6 decimal digits
when k = 4, and to 10 decimal digits when k = 10, at which stage uk
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Table 1.2. The sequences (uk) and (vk) in Example 1.6.

k uk vk

0 1.000000 1.000000
1 0.990000 0.000977
2 0.980100 0.000017
3 0.970299 0.000001
4 0.960596 0.000000
5 0.950990 0.000000
6 0.941480 0.000000
7 0.932065 0.000000
8 0.922745 0.000000
9 0.913517 0.000000

10 0.904382 0.000000

is still larger than 0.9. Although (uk) eventually converges faster than
vk, we find that uk = (0.99)k becomes smaller than vk = (k + 1)−10

when

k >
10

ln(1/0.99)
ln(k + 1) .

This first happens when k = 9067, at which point uk and vk are both
roughly 10−40. In this rather extreme example the concept of asymptotic
rate of convergence is not useful, since for any practical purposes (vk)
converges faster than (uk). 


1.3 Iterative solution of equations

In this section we apply the idea of simple iteration to the solution
of equations. Given a real-valued continuous function f , we wish to
construct a sequence (xk), using iteration, which converges to a solution
of f(x) = 0. We begin with an example where it is easy to derive
various such sequences; in the next section we shall describe a more
general approach.

Example 1.7 Consider the problem of determining the solutions of the
equation f(x) = 0, where f : x �→ ex − x− 2.

Since f ′(x) = ex − 1 the function f is monotonic increasing for positive
x and monotonic decreasing for negative values of x. Moreover,
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f(1) = e − 3 < 0 ,
f(2) = e2 − 4 > 0 ,

f(−1) = e−1 − 1 < 0 ,
f(−2) = e−2 > 0 .


 (1.16)

Hence the equation f(x) = 0 has exactly one positive solution, which
lies in the interval (1, 2), and exactly one negative solution, which lies in
the interval (−2,−1). This is illustrated in Figure 1.4, which shows the
graphs of the functions x �→ ex and x �→ x + 2 on the same axes. We
shall write ξ1 for the positive solution and ξ2 for the negative solution.
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Fig. 1.4. Graphs of y = ex and y = x + 2.

The equation f(x) = 0 may be written in the equivalent form

x = ln(x+ 2) ,

which suggests a simple iteration defined by g(x) = ln(x+ 2). We shall
show that the positive solution ξ1 is a stable fixed point of g, while ξ2 is
an unstable fixed point of g.

Clearly, g′(x) = 1/(x + 2), so 0 < g′(ξ1) < 1, since ξ1 is the positive
solution. Therefore, by Theorem 1.5, the sequence (xk) defined by the
iteration

xk+1 = ln(xk + 2) , k = 0, 1, 2, . . . , (1.17)



1.4 Relaxation and Newton’s method 19

will converge to the positive solution, ξ1, provided that the starting value
x0 is sufficiently close to it.1 As 0 < g′(ξ1) < 1/3, the asymptotic rate
of convergence of (xk) to ξ1 is certainly greater than log10 3.

On the other hand, g′(ξ2) > 1 since −2 < ξ2 < −1, so the sequence
(xk) defined by (1.17) cannot converge to the solution ξ2. It is not
difficult to prove that for x0 > ξ2 the sequence (xk) converges to ξ1 while
if x0 < ξ2 the sequence will decrease monotonically until xk ≤ −2 for
some k, and then the iteration breaks down as g(xk) becomes undefined.

The equation f(x) = 0 may also be written in the form x = ex − 2,
suggesting the sequence (xk) defined by the iteration

xk+1 = exk − 2 , k = 0, 1, 2, . . . .

In this case g(x) = ex−2 and g′(x) = ex. Hence g′(ξ1) > 1, g′(ξ2) < e−1,
showing that the sequence (xk) may converge to ξ2, but cannot converge
to ξ1. It is quite straightforward to show that the sequence converges to
ξ2 for any x0 < ξ1, but diverges to +∞ when x0 > ξ1.

As a third alternative, consider rewriting the equation f(x) = 0 as
x = g(x) where the function g is defined by g(x) = x(ex − x)/2; the
fixed points of the associated iteration xk+1 = g(xk) are the solutions ξ1
and ξ2 of f(x) = 0, and also the point 0. For this iteration neither of the
fixed points, ξ1 or ξ2, is stable, and the sequence (xk) either converges
to 0 or diverges to ±∞.

Evidently the given equation may be written in many different forms,
leading to iterations with different properties. 


1.4 Relaxation and Newton’s method

In the previous section we saw how various ingenious devices lead to
iterations which may or may not converge to the desired solutions of a
given equation f(x) = 0. We would obviously benefit from a more gener-
ally applicable iterative method which would, except possibly in special
cases, produce a sequence (xk) that always converges to a required so-
lution. One way of constructing such a sequence is by relaxation.
1 In fact, by applying the Contraction Mapping Theorem on an arbitrary bounded
closed interval [0,M ] where M > ξ1, we conclude that the sequence (xk) defined
by the iteration (1.17) will converge to ξ1 from any positive starting value x0.
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Definition 1.5 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number ξ. Relaxation uses the
sequence (xk) defined by

xk+1 = xk − λf(xk) , k = 0, 1, 2, . . . , (1.18)

where λ �= 0 is a fixed real number whose choice will be made clear below,
and x0 is a given starting value near ξ.

If the sequence (xk) defined by (1.18) converges to ξ, then ξ is a
solution of the equation f(x) = 0, as we assume that f is continuous.

It is clear from (1.18) that relaxation is a simple iteration of the form
xk+1 = g(xk), k = 0, 1, 2, . . ., with g(x) = x − λf(x). Suppose now,
further, that f is differentiable in a neighbourhood of ξ. It then follows
that g′(x) = 1−λf ′(x) for all x in this neighbourhood; hence, if f(ξ) = 0
and f ′(ξ) �= 0, the sequence (xk) defined by the iteration xk+1 = g(xk),
k = 0, 1, 2, . . ., will converge to ξ if we choose λ to have the same sign as
f ′(ξ), to be not too large, and take x0 sufficiently close to ξ. This idea
is made more precise in the next theorem.

Theorem 1.7 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number ξ, and let f(ξ) = 0.
Suppose further that f ′ is defined and continuous in some neighbourhood
of ξ, and let f ′(ξ) �= 0. Then, there exist positive real numbers λ and
δ such that the sequence (xk) defined by the relaxation iteration (1.18)
converges to ξ for any x0 in the interval [ξ − δ, ξ + δ].

Proof Suppose that f ′(ξ) = α, and that α is positive. If f ′(ξ) is neg-
ative, the proof is similar, with appropriate changes of sign. Since f ′

is continuous in some neighbourhood of ξ, we can find a positive real
number δ such that f ′(x) ≥ 1

2α in the interval [ξ−δ, ξ+δ]. Let M be an
upper bound for f ′(x) in this interval. Hence M ≥ 1

2α. In order to fix
the value of the real number λ, we begin by noting that, for any λ > 0,

1 − λM ≤ 1 − λf ′(x) ≤ 1 − 1
2λα , x ∈ [ξ − δ, ξ + δ] .

We now choose λ so that these extreme values are equal and opposite,
i.e., 1 − λM = −ϑ and 1 − 1

2λα = ϑ for a suitable nonnegative real
number ϑ. There is a unique value of ϑ for which this holds; it is given
by the formula

ϑ =
2M − α
2M + α

,




